Drug induced Liver Injury (DILI): What is the Problem?

Gerry Kenna
Drug Safety Consultant
jgerrykenna@gmail.com
Pharmaceutical Director, Safer Medicines Trust
gerry@safermedicines.org; www.safermedicines.org
Presentation outline

- Liver structure and functions
- Causes of liver injury
- Drug Induced Liver Injury (DILI)
 - Patterns
 - Concordance, animals vs. humans
 - Consequences and impact
 - Assessment (histopathology and clinical chemistry)
 - Tolerance and adaptation
 - Aplaviroc, FDA Guidance, Ximelagatran
 - Predictive screening rationale and challenge
- Summary
Liver structure and functions

- A complex organ, numerous cell types
- Receives blood from the heart (hepatic artery) and GI tract (hepatic portal vein)
- Key functional unit is the acinus
- Plays essential roles in:
 - Intermediary metabolism - lipid, carbohydrate, protein
 - Whole body homeostasis - blood clotting, albumin synthesis, endocrine & exocrine signalling
 - Digestion - bile formation and release
 - Detoxification - xenobiotic metabolising enzymes, bile
 - Host defence - innate and adaptive immunity
Liver injury

- Caused by:
 - Infectious agents (Hep A, B, C, etc.)
 - Foreign compounds (alcohol, pharmaceuticals, other chemicals)
 - Vascular changes (portal hypertension)
 - Unknown triggers (“autoimmune”)

- Loss of liver function = liver injury
 - Severe = acute liver failure (high fatality)
 - Less severe = liver disease (hepatocellular, cholestatic or mixed)

- Liver has substantial “functional reserve” and excellent repair capacity
 - Mild liver injury often does not result in impaired liver function

- Drug Induced Liver Injury = DILI
Two human DILI patterns

- **Type A**
 - Reproducible and dose dependent
 - Usually evident from animal safety studies
 - Causes:
 - Candidate drug attrition in animal safety studies
 - Attrition in early clinical trials, or dose-capped human exposure

- **Type B**
 - Infrequent, not overtly dose dependent ("idiosyncratic")
 - Not evident from animal safety studies
 - Causes:
 - Drug attrition in late clinical trials
 - Failed registration
 - Adverse labelling (boxed warnings etc.)
 - Withdrawal of licensed drugs

Poor DILI concordance between preclinical species and humans

- 31 cases of liver toxicity in man during drug development (21%)
 - 14 Phase I, 13 Phase II, 4 Phase III

- 17 liver toxicity observed in animals (55%)
 - (R: 2, NR: 7, R+NR: 8)

- 14 no liver toxicity observed in animals (45%)

- 55% compounds terminated

- DILI was an important adverse event during human drug development and a leading cause of termination
- Only 55% of compounds that caused DILI in man exhibited evidence of DILI in preclinical species
- Better concordance in nonrodent (dog) that in rodent (rat)

Failed drug development

The leading causes of failed drug development are lack of efficacy and toxicity
Hence increasing cost and reducing productivity of drug development
Human Adverse Drug Reactions (ADRs) that occur late in development, or after licensing, are a particular problem

DILI impact

- More than 1000 drugs listed as possibly hepatotoxic
- An important cause of human illness
 - 10% of apparent “hepatitis cases” (>40% over 50 years of age)
 - Major cause of acute liver failure in U.S.
 W Lee, AASLD DILI Conference, 2005
 - Frequent cause of illness in hospitalized patients
 Clinically apparent DILI ~14 cases per 100,00 inhabitants
- Most important single cause of failed drug licensing, limitations on use, and drug withdrawal post marketing
Drug withdrawals due to toxicity

- DILI was the most frequent cause, 1970 - 2010
DILI assessment

- **Tissue histopathology**

 Paracetamol in the mouse
 Centrilobular hepatocyte necrosis

 Methapyrilene in the rat
 Bile duct proliferation (BDP), apoptotic bodies, necrotic cell, inflammatory cell infiltration

- **Serum clinical chemistry**

 “Leakage enzymes”, released primarily from damaged hepatocytes

 - ALT, AST: cytosolic

 - AP: canalicular plasma membrane, indicating biliary injury

 - Bilirubin, cleared by healthy hepatocytes into bile
Many different DILI pathologies

- **Hepatocellular injury**
 - Hypertrophy (e.g. P450 enzyme induction – an adaptive response)
 - Necrosis
 - Classical dose-dependent *(e.g. paracetamol)*
 - Idiosyncratic *(Metabolic e.g. cocaine vs. Immune e.g. halothane)*
 - Steatosis (microvesicular, macrovesicular)
 - Phospholipidosis
- **Cholestasis** *(e.g. estrogens, chlorpromazine)*
- **Mixed hepatitis/cholestasis** *(e.g. sulindac)*
- **Fibrosis** *(e.g. chlorpromazine)*
- **Vascular lesions** *(e.g. contraceptive steroids)*
- **Tumours** *(e.g. anabolic steroids)*
- Etc……….
<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>100 mg/kg</th>
<th>250 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Glucose</td>
<td>16.95</td>
<td>1.68</td>
<td>17.13</td>
</tr>
<tr>
<td>Urea</td>
<td>5.35</td>
<td>0.35</td>
<td>5.43</td>
</tr>
<tr>
<td>Albumin</td>
<td>32.75</td>
<td>0.50</td>
<td>33.75</td>
</tr>
<tr>
<td>Alk Phos</td>
<td>168.00</td>
<td>25.44</td>
<td>191.50</td>
</tr>
<tr>
<td>ALT</td>
<td>60.75</td>
<td>13.00</td>
<td>58.00</td>
</tr>
<tr>
<td>AST</td>
<td>61.75</td>
<td>6.80</td>
<td>61.25</td>
</tr>
<tr>
<td>Bile acids</td>
<td>27.25</td>
<td>4.35</td>
<td>30.25</td>
</tr>
<tr>
<td>Na</td>
<td>146.00</td>
<td>0.82</td>
<td>145.00</td>
</tr>
<tr>
<td>K</td>
<td>4.13</td>
<td>0.40</td>
<td>4.15</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>1.58</td>
<td>0.10</td>
<td>1.30</td>
</tr>
<tr>
<td>Tryglyceride</td>
<td>1.69</td>
<td>0.50</td>
<td>0.97</td>
</tr>
<tr>
<td>GldH</td>
<td>4.50</td>
<td>0.58</td>
<td>5.75</td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td>0.25</td>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Elevated transaminases, bilirubin and bile acids in rats doses daily for 6 days with a hepatotoxic compound.

Data provided by clinical pathology, AstraZeneca
Aplaviroc

- Antiretroviral CCR5 antagonists
- Development terminated due to infrequent liver toxicity observed in clinical phase 2

Serum liver marker elevations: ALT, Bilirubin
Liver portal tract inflammation

DILI tolerance and adaptation

When treated with drugs that cause human idiosyncratic DILI:

- Most individuals “tolerate” the drug (typically ≥ 90%)
- A small proportion sustain initial injury and then adapt
- Relatively few fail to adapt (typically ≤ 1%) – these may progress to acute liver failure
FDA Guidance

- Pragmatic advice on how best to detect and interpret DILI signals in clinical trials
- ALT >3 x ULN a possible signal
- Focus on low frequency “outliers” (eDISH)
- ALT >3 xULN plus bilirubin >2xULN = a possible index DILI case (“Hy’s Law”)
- Importance of causality assessment highlighted

eDISH plot

Maximum Total Bilirubin versus Maximum Alanine Aminotransferase (ALT)

- Normal Range
- Hyperbilirubinemia
- Possible Hy's Law Range
- Temple's Corollary

Maximum values are those maximum values that occur post-baseline (no time constraints and not necessarily concurrent events)
Ximelagatran

- First in class oral direct thrombin inhibitor, for venous thromboembolism (VTE) prevention and treatment
- No evidence of liver injury:
 - In preclinical safety studies undertaken in rat, dog and cynomolgus monkey
 - In short-term use in humans (7-12 days)
- Elevated serum ALT levels when administered >35 days in humans
 - 7.9% patients affected; 93% between 1-6 months after start of treatment
 - Marked (ALT >3x ULN) but relatively transient ALT elevations
 - In 96% of patients, ALT elevations returned to normal within 6 months whether or not treatment was continued
- Very few symptomatic liver injury cases
- RUCAM: 65% of liver injury cases judged ‘possible’ or ‘probable’ causality

Lee et al., 2005, Drug Safety 28:351-370
Petersen et al. 2003, J Am Coll Cardiol 41:1445–51
Unsafe vs. safe drugs

Severe DILI risk
- Halothane
 - Black Box Warning, labelling, restricted use

Marked DILI risk
- Enflurane, isoflurane
 - Labelling

Minimal/no DILI risk ("safe")
- Sevoflurane

Troglitazone
- withdrawn

Bromfenac
- withdrawn

Benoxaprofen
- withdrawn

Bromfenac (topical)
- Labelling

Ibuprofen
- Labelling

Halothane
- Black Box Warning, labelling, restricted use

Enflurane, isoflurane
- Labelling

Sevoflurane

Clozapine
- labelling, restricted use

Olanzapine
- labelling

Quetiapine

Bosentan
- Labelling + monitoring

Ambrisentan

Sitaxentan
- withdrawn

Bromfenac (topical)
- Labelling

Pioglitazone
- labelling

Ibuprofen
- Labelling

Bromfenac (topical)
- Labelling
Drug-induced liver injury (DILI) is a leading cause of drugs failing during clinical trials and being withdrawn from the market. Comparative analysis of drugs based on their DILI potential is an effective approach to discover key DILI mechanisms and risk factors. However, assessing the DILI potential of a drug is a challenge with no existing consensus methods. **We proposed a systematic classification scheme using FDA-approved drug labeling to assess the DILI potential of drugs, which yielded a benchmark dataset with 287 drugs representing a wide range of therapeutic categories and daily dosage amounts.** The method is transparent and reproducible with a potential to serve as a common practice to study the DILI of marketed drugs for supporting drug discovery and biomarker development.
Managing DILI

Drug discovery
- Proactive prediction and avoidance during compound selection
- “Picking likely winners”
 - Flagging and deselecting problem compounds when there is chemical choice and the cost of terminating them is low

Drug development
- Monitoring biomarkers of susceptibility or toxicity
- “Personalised healthcare”:
 - Proactive detection of patients at high risk of ADRs
 - Early identification of patients who sustain ADRs, prior to onset of serious illness

Drugs with good safety profiles have a big competitive advantage
Paracetamol (acetaminophen)

Hinson et al. 2010, Handb Exp Pharmacol 196:369-405
Halothane etc.

Patients with halothane hepatitis have:
- serum antibodies to TFA-modified liver proteins
- serum autoantibodies to CYP2E1 and other liver proteins

The lower frequencies of DILI caused by other anesthetics correlates with their reduced extents of bioactivation

DILI initiating mechanisms

DRUG

- Excreted metabolites
 - "Toxic" metabolite
 - Covalent binding to protein
 - Immune response
 - Immune mediated hepatotoxicity
 - Direct or idiosyncratic hepatotoxicity
 - Noncovalent interaction with critical cellular macromolecules

Of critical importance are:
- Metabolism (toxication and detoxication)
- Disposition (transporters!)
- Molecular and cellular events leading to toxicity
Predictive DILI screening rationale

Drug

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Hepatic uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Chemical insult in liver</td>
</tr>
</tbody>
</table>
| Step 3 | Biological response in target cell
 e.g. cell toxicity, stress response, transporter up-regulation |
| Steps 4... | Biological response in tissue
 e.g. cytokine release, inflammatory cell response |

Outcome

- **Preclinical species vs. man**
- **Protection**
 e.g. stress response
- **Propagation and amplification**
 e.g. innate and adaptive immunity
- **Tolerance & adaptation**
- **Toxicity**

Which insults?
How to measure them?
Many possible *in vitro* tools.....

Simple
- Cultured liver cell lines
- Membrane vesicles

Intermediate
- Supportive Stromal Fibroblasts
- Micropatterned Hepatocytes

Complex
- Bioreactors
- Spheroids

Factors:
- Complexity: Low to High
- Volume: Low to High
- Cost: Low to High
- Turnaround time: Low to High
The Challenge

- Which *in vitro* assays and endpoints?
 - DILI mechanistic relevance?
 - Robustness, throughput, turnaround time, cost?

- How to evaluate and validate them?

- When to run them?

- How to interpret the data and use them to take better decisions in drug Discovery?

- How to use *in vitro* data to enhance preclinical and clinical hazard identification and risk assessment, not hinder it?

» Many divergent views, scientific consensus only now emerging....
THAT WHEEL THING...WE TRIED IT ONCE BEFORE AND IT DIDN'T WORK!

NEANDERTHAL MAN'S LACK OF CURIOSITY DOOMED HIM TO EXTINCTION
Summary so far

- Preclinical safety studies in animals are valuable for detection of dose dependent DILI, and protect patients in early clinical trials from significant liver dysfunction.

- But they cannot detect idiosyncratic DILI.

- Tools which can detect both idiosyncratic and dose dependent DILI are needed during drug discovery.

- How can we identify, validate and use such tools to aid the design of safe drugs?
References

